数字农业是将数字化信息作为农业新的生产要素,用数字信息技术对农业对象、环境和全过程进行可视化表达、数字化设计、信息化管理的新兴农业发展形态,是数字经济范畴下用数字化重组方式对传统产业进行变革和升级的典型应用之一。
物联网在农业领域应用广泛,而农业领域又有着丰富的连接需求,农业物联网市场潜力巨大。亚太地区按照物联网技术在农业领域中的不同应用,划分为如下几类:1、精准农业:作为一种农业管理方式,精准农业利用物联网技术及信息和通信技术,实现优化产量、保存资源的效果。精准农业需要获取有关农田、土壤和空气状况的实时数据,在保护环境的同时确保收益和可持续性。2、可变速率技术(VRT):VRT是一种能够帮助生产者改变作物投入速率的技术。它将变速控制系统与应用设备相结合,在精准的时间、地点投放输入,因地制宜,确保每块农田获得最适宜的投放量。3、智能灌溉:提升灌溉效率、减少水源浪费的需求日益扩大。通过部署可持续高效灌溉系统以保护水资源的这种方式愈来愈受到重视。基于物联网的智能灌溉对空气湿度、土壤湿度、温度、光照度等参数进行测量,由此精确计算出灌溉用水需求量,该机制可有效提高灌溉效率。4、农业无人机:无人机有着丰富的农业应用,可用于监测作物健康、农业拍照(以促进作物健康生长为目的)、可变速率应用、牲畜管理等。无人机可以低成本监视大面积区域,搭载传感器可轻易采集大量数据。5、智能温室:智能温室可持续监测气温、空气湿度、光照、土壤湿度等气候状况,将作物种植过程中的人工干预降到最低。上述气候状况的改变会触发自动反应。在对气候变化进行分析评估后,温室会自动执行纠错功能,使各气候状况维持在最适宜作物生长的水平。6、收成监测:收成监测机制可对影响农业收成的各方面因素进行监测,包括谷物质量流量、水量、收成总量等,监测得到的实时数据可帮助农场主形成决策。该机制有助于缩减成本、提高产量。
人工智能在农业领域的应用潜力巨大。机器学习所具备的通过使用大数据来优化单个或一系列关键目标的能力很适合用来解决农业生产中的作物产量、疾病预防和成本效益等问题。在种植领域,人工智能有望提高粮食产量、减少资源浪费。机器学习技术可以被用来分析来自无人机和卫星的图像、气象数据、土壤样本和湿度传感器的数据,并帮助确定播种、施肥、灌溉、喷药和收割的最佳方法。在精准农业中的各个环节中,机器学习都能发挥重要的作用,从而提高粮食的产量。在养殖领域,利用人工智能可以有效降低疾病造成的损失。在一项学术研究中,研究人员收集和分析鸡的声音,并训练神经网络模式识别算法后,研究人员能够正确地识别出感染了致命疾病的鸡,其中发病2天的鸡的识别准确率为66%,而发病8天的鸡的识别准确率为100%。正确诊断牲畜所患疾病并尽早在损失发生之前进行治疗可以消除由疾病导致的损失。据行业专家估计,挽回的损失可达20亿美元。
除了以上领域,人工智还能缩短农业研发进程,提高粮食产量、降低损失,帮助培育更好的植物基因,创造更安全的农产品,并且人工智能在这些领域的介入更加成熟,因为这一领域的数据更加丰富,数据获取的速度也更快。